

EISCAT Technical Note 82/34

THE EISCAT CORRELATOR

Regis Gras

EISCAT Scientific Association
S-981 27 Kiruna, Sweden
March 1982

EISCAT Technical Note 82/34
Printed in Sweden
ISSN 0349-2710

This note is an edited trans-
lation of "Programmation du
Correlateur 4d'EISCAT" by
Regis Gras published by
CEPHAG, Grenoble,

CONTENTS
1. OUTLINE DESCRIPTION ‘ 3
1.1 The Buffer Memory and Result Memory 4
1.2 Links with other equipment 4
1.3 The Correlator as Multiprocessor 5
1.4 The different parts of the Correlator Memory 6
2, OPERATION AND PROGRAMMING 9
2.1 The PR@-instruction 13
2.2 The APB - APM instructions 18
2.3 The Arithmetic Instructions 23
2.4 The Process of Accumulation 24

Note : This technical note was first published

in French in June 1980 "to make EISCAT users familiar with

the programming and operation of the EISCAT correlator."

It succeeded so well in this aim that I thought a translation
would be valuable. In preparing this translation I received

considerable help from Kristen Folkestad, Hans-Jorgen Alker
and Regis Gras. The original contained a section on the

development tools available for the writing and implementation
of correlator microprograms, The early version of CORRSIM

has been replaced by an entirely new version which, together
with the program CORRTEST, is described in EISCAT Technical
Note 81/25. The section on program development has therefore

been omitted from this translation. Phil Williams (Ed.)

THE EISCAT CORRELATOR

The EISCAT correlator is a semi-specialised hardware device.

- specialised because it has been constructed to

calculate expressions of the form

E %3 Xi—j (xi and X;_4 are complex samples)

- semi-specialised because it is not set in a hard-wired
configuration, but can be microprogrammed so that a
certain versitility is available in the type of calcu-

lation and the way in which it is carried out.

OUTLINE DESCRIPTION

This correlator includes a buffer memory, where sampled
data are stored before processing, and a result memory

where the results are stored.

The correlator is not isolated but forms part of a system

which also includes:
- the radar controliler
- a Nord-10 computer from Norsk Data.

The correlator is a multiprocessor. For different reasons,
especially the need for speed, the correlator is a multi-
processor in which each micro-instruction can carry out

7 operations in parallel.

The correlator is microprogrammable and possesses a
program memory of 64 words, each 128 bits, and different

fields of data.

1.1

-4 -

The Buffer Memory and Result Memory

1.1.2

The Buffer memory is divided into two symmetric
parts which can simultaneously be read by the
correlator and written in by the A/D-converter.
Each part of this memory holds 16-bit words with
a maximum capacity of 64 kilowords (for the time
being the capacity is 4 kilowords). It is in this
memory that the sampled measurements are stored;
each sample is stored as 2 8-bit numbers, X being
sampled from the in-phase channel and Y from the

quadrature channel.

As soon as the correlator has finished its calcu-
lations on the part of the memory it has just read,
it switches to the other part of the memory which
has just received data. The part which previously
was being read now receives new data. This permu-

tation is conducted by the radar controller.

The result memory holds 2048 64-bit words, and is
designed with the possibility for a doubling of
the present capacity. It is here that the corre-
lator stores the correlation functions it has cal-

culated. Each word in this memory is made up of:
- 32 bits for the real part of the result and

- 32 bits for the imaginary part.

The real and imaginary parts are stored together

at the same address.

with other equipment.

Links with the Nord-10

The correlator is linked to Nord-10 via Direct

Memory Access: DMA, and via a NON-DMA I/O-rort.

The links make use of CAMAC. (CAMAC is an inter-
national standard for electrical connection be-

tween different pieces of equipment).

These links serve:

~ to transfer data from the result memory
to the computer memory via the high-speed
DMA channel

- to load the programmable memories of the
correlator from the Nord-10 (cf. 1.4.1 and
1.4.2) via the low-speed CAMAC output port.

Y

As it has been stated previously, the radar con-
troller controls the buffer memory of the corre-
lator. The radar controller gives the following

commands :
- start sampling
- switch buffer memory

- start computation.

The Correlator as a Multiprocessor

It is capable of carrying out 7 operations in parallel.
These 7 simultaneous operations make up one step in the

basic computation.

In general, each basic computation can be broken down
into:

- a choice of the operand in the buffer memory

- anarithmetic calculation on the operand selected

-~ storing of the result, with or without accumulatioﬁ,

in the result memory.

.4

A complete calculation, carried out by the correlator,
is made up of a certain number of basic operations. The
control of these basic computations is carried out by the

loop counters.

The 5 parallel functions of the correlator are:

~ calculation of the buffer memory address (APB
Processor)

- control of the arithmetic unit

- calculation of the result memory address (APM

Processor)
~ accumulation of the results in the result memory

- control of the loop counters (i.e. control of the

running microprogram, 4.2.1).

To these must be added two other functions:

- control of the DMA transfer to the computer

-~ control of the communications between correlators
(assuming a multicorrelator system which does not

yet exist).

The Different Parts of the Correlator Memory.

To be executed, every program needs

-~ instructions

- data.

In what we normally call a program, written in a high-
level or an assembly language, instructions and data
can be stored in the same memory. For the correlator,
however, the instructions and the parameters are stored
physically in different hardware memories, serving as
program-memory and parameter-memory. The last is actu-

ally a set of 2 register stacks.

This can contain 64 instructions, each occupying
128 bits. A single instruction is divided into
7 fields, each field being a single processor in-

struction. The 7 fields are executed simultaneously.

Restriction:

Of the 64 words in the program memory, only 62 can

be used

- the word 0 in the memory is used as an idle

loop at the start of the calculation

- the words 63 is used in the control of external

interrupts.

It is in these registers that the operands for

the different processors are stored.

There are two fields for the principle parameters:

- the APB stack: a stack of 16 registers serving
as a memory for the APB-processor (the processor
which controls the addresses in the buffer memory;

cf 3) and optionally reloads the loop-counters.

- the APM-stack: a stack of 16 registers identical
to the previous stack and serving as a memory for
the APM-processor (the processor which controls

the addresses in the result memory; cf 3)

Note : there are also three registers to initialise

~ the status register

- the SAR register (start address of the program)

- the DATA-I-register (containing the number of words

to be transferred to the computer).

This introductory description is summarised in Fig.l.

- Figure 1

o0dd-Wd¥

ARq po3eTINOTERD SSaIppe I3yl

UT U®33TIM ST 3INSd1 YL

AIOWON AIOWSK
3Tnsay Io3eTIUMOOY zsI13ng
o1dues
: o9TS
N
D09 d-Wda¥ o0dd-4g4dv
I9Jsueiy, || i
v3eq JO 10ss9001d JTUn I0SS300Id
TOI3USD SSSIpLVY OTISUIT AY SSaipPY
7]
S 4 3 [4 T
SIOSS2D0I@ JUSISJJIP 92Ul 031 USATDL Spurwuwo)
9
793 ndwoD 12T TOIUO
0T -QION TT uw mw
ire1p01d-l 1sousnbag °P'Y
o oo1tOoy} weiboad-n

“AJOWSRN WeIbOIg

-9

OPERATION AND PROGRAMMING

The different processors in the correlator are now de-

scribed from two viewpoints:

- their method of operation

- their programming.

Each microinstruction of 128 bits is divided into 7 fields

which each controls a particular function. During the exe-

cution of a microinstruction,

carried out in parallel.

the seven functions are

The internal division of a single microinstruction is given

in Fig. 2.
6 bits |8 bits |7 bits |36 bits | 17 bits| 18 bits| 34 bits
/9 guT ACC ART APM APB PR@
Figure 2.
PR@: controls the execution of the program in the

correlator and permits the loading of the pro-

grammable registers

APB: controls the addressing of data in the buffer
memory

APM: controls the addressing of data in the result
memory

ARI: controls the arithmetic operations carried out

on the data

ACC: controls the accumulation of the results calcu-~

lated at a given instant with those already stored

in the result memory

@UT = carries out the transfer of data from the result

memory to the computer by DMA

1/0: would control communication in a multicorrelator

system

(not in use).

10
Figure 3.1

suorjeiado ¥

proTS1 O3
I193SIb21 JO SS81ppVY

1

suorjeisdo g

suotjzeiado g
M

suoT3riado ¢

1

T

M

SS9l 1=
5P 1

SUOT3e19g0 7T
T1I¥D I0
dWAL 107

mcoﬁpmu&mo Z€

qaav-o avg1ad

DT COT | ¥TdD1

1071

¥aav| g9-"2dgo IN-32ago

TAGO-ANGD

S}0e3S 193STHboi JO HBUIpeOTaYy

4
sIs3unoon-doors

~11-

Figure 3,2

Control of the Program Counter

3
6
7

13

15

16

17

23

26

27

33

35

36

37

40

46

47

54

55

56

57

62

63

66

67

71

72

73

74

75

76

77

(IF LC1#0 THEN B ELSEIF LC2#0 THEN A OTHERWISE CONT)

(IF LC3#0 THEN B ELSEIF LC2#0 THEN A OTHERWISE CONT)

(IF LC1#0 OR LC3#0 THEN B ELSEIF LC2#0 THEN A OTHERWISE CONT)
(IF LC1#0 THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT)

(IF LC1l#0 OR LC3#0 THEN B OTHERWISE CONT)

(IF LC3#0 THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT)

(IF LC1#0 OR LC3#0 THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT)
(IF LC1=0 THEN B ELSEIF LC2#0 THEN A OTHERWISE CONT)

(IF LC3=0 THEN B ELSEIF LC2#0 THEN A OTHERWISE CONT)

(IF LC1=0 OR LC3=0 THEN B ELSEIF LC2#0 THEN A OTHERWISE CONT)
(IF LC1=0 THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT)

(IF LCl1=0 OR LC3=0 THEN B OTHERWISE CONT)

(IF LC3=0 THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT)

(IF LC1l=0 OR LC3=0 THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT)
(USE-A)

(IF LC2#0 OR LC3#0 THEN B ELSE A)

(IF LC1=0 OR LC2#0 OF LC3#0 THEN B ELSE A7)

(IF LC3#0 THEN B ELSE Aa)

(IF LC1=0 OR LC3#0 THEN B ELSE A)

(IF LC2=0 OR LC3#0 THEN B ELSE A)

(IF LCl=0 OR LC2=0 OR LC3#0 THEN B ELSE A)

(IF LC2#0 THEN B ELSE A)

(IF LC1=0 OR LC2#0 THEN B ELSE A)

(IF LC2#0 OR LC3=0 THEN B ELSE A)

(IF LLCl=0 OR LC2#0 OR LC3=0 THEN B ELSE A)

(IF LCl=0 THEN B ELSE A)

(IF LC2=0 THEN B ELSE A)

(IF L.C1=0 OR ILC2=0 THEN B ELSE A)

(IF LC3=0 THEN B ELSE A)

(IF LCl=0 OR LC3=0 THEN B ELSE A)

(IF LC2=0 OR LC3=0 THEN B ELSE A)

(IF LC1=0 OR LC2=0 OR LC3=0 THEN B ELSE A)

Different possible tests

PC=PC+1, POP STACK
PC=RETURN ADDR., POP STACK
PC= ADDR., POP STACK

PC= SAR, POP STACK

PC=PC+1

PC=RETURN ADDR.

PC=ADDR.

PC=SAR

PC= PC+1, PUSH STACK

PC= RETURN ADDR., PUSH STACK
PC= ADDR., PUSH STACK

PC= SAR, PUSH STACK

~12-

Figure 3,3

Operations on the Loop Counters

0 NOOP
1 LCl=LCl-1
2 LC1=LCR1
3 LC1=LCRI1A
4 IF LCL=0: LC1l=LCR1l,LC2= 0 NOOP
LC2-1, ELSE: LCl=LCl-1 1l LCR1A=LC1
5 IF LCl1=0 and LC3=0:1Cl=
LCR1A, ELSE: LC1=LCl-1
6 IF LC1l=0: LC1l=LCR1,
ELSE: LCl=LCl1-1
7 IF LC1=0: LCl=LCR1lA,
ELSE: LCl1=LCl-1
Lcl LCR1A
0 NOOP 0 NOOP
1 LC2=LC2-1 1 LC3=LC3-1
3 LC2=LCR2 2 LC3=LCR3
3 IF LC3=0: LC3=LCR3,
ELSE: LC3=LC3-1
LC2 LC3
Reloading of a register
RELOAD: 0 NOOP R-ADDR.: 4 RELOAD SAR
1 REGISTER-RELOAD 5 " BAR, APB
22 " LCR1
23 " LCR2
24 " LCR3

The reloading is only implemented if the bit RELGAD equals 1

-13-

2,1 The PR@-instructions (Fig. 3)

This field controls:

- the loop-counters

- the loading of the programmable registers from the APB

- the program counter.

To carry out a calculation, the correlator has 3
12 bits loop-ccounters. These are: LC1l, LC2, LC3 and
a temporary register LCR 1A.

The 3 loop-counters are not identical; in particular,
only the first, LCl, can be re~loaded from LCR 1A.

In the field of the PR@-instruction, 4 sub-fields
indicate the operation to be effected on LCl, ... LC3,
LCR 1A.

To control the number of loops in a program, the
loop-counters are tested at 0. Now the only oper-
ation that can be performed on a loop~counter is
to decrease it, so it is necessary to load the

loop-counters with their initial values.

These initial values are cortainedin three "load
registers for loop-counters" LCRLl, LCR2, LCR3.

These three registers can themselves be loaded from
the values stored in the APB-Stack memory (cf. 1.2.2).
Once these registers are loaded, their contents can
be transferred at will to the loop~counters. The

mechanism is represented in Fig. 4.

APB-STACK

\L ~

LCR1A LCR1 LCR2 LCR3
" -

LC1 LC2 LC3

Figure 4.

- 14 -

Note: Although the 3 loop-counters can be loaded
from the LCRs by a single microinstruction,
this does not apply to the loading of the
ILCRs themselves. The loading of an LCR with
a value stored in the APB-Stack requires 3

microinstructions:
- one to program the reloading of an LCR

- two NOOP (for the correlator needs two clock

cycles after a reload).

During the execution of a program, the program counter
(PC) takes different values corresponding to different

instructions.
The value at any instant t is a function of:

- its value at the instant t-1

- thé result of the instruction executed at t-1.

Generally, from one step in a program to the next

the program counter is increased by 1 (PC = PC + 1),
except when the instruction being executed is a branch
instruction (conditiocnal or not).

Example:
I =1
10 IF (I.EQ.2) GO TO 20
I =I+1
GO TO 10
20 CONTINUE

=W - O

Given a machine where one instruction only occupies
one line and they are stored at addresses 0, 1, 2,
3 and 4, the values of PC would be:

- 15 -

t =0 PC =0
t =1 PC = 1
t =2 PC = 2
t =3 PC = 3
t =4 PC =1
t =5 PC = 4

In a program language at the lowest level (assembler),
2 types of instruction can be distinguished
~ those which increase the nrogram counter (after
their execution the computer pvasses to the next
instruction)
- those which load the program counter with an
other address (conditionally branching or not);
it is this latter type of instruction which allows

loops in a program.

The mechanism of conditional branching in the corre-
lator programs is a little different in the sense
that the tests and the operations on the counter are

separate.

In the instruction field of the correlator there
are two sub-fields called CODE-A and CODE~B (cf.
Fig. 3.1).

Each one receives the code of an operation possible

on the program counter.

A third sub-field contains the code of one of the
32 possible tests on the loop-counters (listed in
Fig. 3.2). It is the result of this test which de-

termines the choice bhetween code A and code B.

The mechanism is summarised in Fig. 5.

- 16 -

Instruction directed by PC at the instant C

Program Field
N

-

7/ N\ ————
t: PC TEST CODE-A CODE-B
Code A
Code instruction = or as a function of
Code B the test
t + 1: New PC = f (code instruction)

Figure 5.

- 17 -

Programming o f t he Counter

To facilitate the programming of the loops and to
allow microprograms to have the structure of sub-

routines, the correlator makes use of a stack.

This stack consists of 4 memories and it is carried

out according to the LIFO principle (last in, first
out) .

At a given instant, only the last value loaded in
the stack can be referred to. The set of instructions

that can be programmed

- controls this stack

a) safe guarding in the stack the value of
PC + 1 (the return address when calling a

subroutine)

b) destroying the last return address in the

stack.

c) branching <o the last return address in the

stack

The complete list of instructions is given in Fig. 3.2.

- permits conditional branching or continuing

in sequence.

Programming T e s t

As has already been mentioned, the 32 possible tests
(cf. FPig. 3.2) are tests on the value of the loop-
counters. No particular value can be tested - only

if it is zero or not.

There are two types of test; simple and double, which
allow a choice between CODE-A and CODE-B.

For simple tests, the choice is made as follows:
if the test is true, use CODE-B; otherwise use
CODE-A.

Example: '
IF ICl =0 THEN B ELSE A (code test 71)
IF LC1 = 0 OR LC2 # 0 THEN B ELSE A (code test 63).

For double tests, if test 1 is true, then use CODE-B;
otherwise, if test 2 is true, then use CODE-A, other-

wise continue in sequence:

Example:
Test 1 Test 2
IF LC3 # 0 THEN B ELSE IF LC2 # 0 THEN A

OTHERWISE CONTINUE.

- Restriction:

The instruction field (cf. Fig. 3) only allows a
single address for branching, so that only one of

the two codes A or B can be a branching instruction.

Note:

In the program field, operations on the loop-counters
and tests on their value are carried out. Each oper-

ation occurs in two stages:

- first the test on the value of the counter

- afterwards the operation on the counter.

2.2 The APB - APM Instructions

2.2.1 General

These are the instructions which control the addressing
of the buffer memory and the result memory. The in-
structions are identical, but they concern two dif-

ferent processors, operating in parallel.

-19 -

APB APM

Commands given

Buffer
Memory

APB APM
Processor Processor
Result
Memory
APB APM
Stack Stack
Figure 6.

Each of the two processors has its own parameter
memory containing 16 registers, the APB-Stacks and
the APM-Stacks.

" Note

- the addressing capacity of the APM is 4 K of
64 bits words (only 2 K words are implemented
at present with 32 + 32 = real and maginary)
and that of the APB 64 K l6-bits words (4 K words

implemented at present, 8 bits for each sample)

- an address in the buffer memory concerns the

two samples X and Y

an address in the result memory concerns the

real and imaginary part of the result

each element in the parameter memory APB-STACK
and APM-STACK, is accessed like a table according

to its index or address in the table.

The instruction fields APM and APB only contain

two addresses of operands in the parameter memory.
At a given instant, only two elements in the APB-
STACK or APM-STACK memories can be addressed in the
same micro-instruction. In addition to the 16 regis-
ters of the APB/APM processors, each processor has

an extra programable register for temporary storage.

Terminology

The terminology used in EISCAT Technical Notes is as

follows:

R and S are operands (selectable) in each of

the parameter memories
A and B are the addresses of these operands

the parameter memory is called RS, so that an
operand is: R = RS (A) or S = RS (B)

the programmable register is the Q-REGISTER.

Use of APB and APM Processors

The calculation of an address by a processor can be

broken down into three stages:

a)

choice of an operand (ALU-SOURCE). This operand
can be RS (A), RS (B), O, O, DATA-I-REGISTER

calculation on this operand (ALU-FUNCTION)
For the two chosen operands, we can program
addition, subtraction or operations of less
obvious interest such as OR, AND, exclusive
OR etc.

b)

- 21 -

use of the result

The result of the calculation effected on the
operands serves to address the buffer memory
APB processor) or the result memory (APM pro-
cessor). In the EISCAT 1literature this address
is called oOUT.

However, we should distinguish:

OUT which is the address in the memory

F which is the result of the calculation
itself.

In general, this result:

- serves as an address in the memory: OUT = F

and
- can be stored:
-
in the parameter memory : RS (B) = F
{ or
in the Q~Register : Q= F
L

The possibility of storing temporary results
allows registers to be used as base-addresses
for calculating the next address in a vector-

addressing scheme.

The mechanism is illustrated in Fig. 7

Parameter
Memory RS

(APB-STACK
or
APM-STACK)

- 22

Fiqure 7

16 registers

Q - REGISTER

2 N
Choice of operands
Operand Operand

R S

ALU (for the
calculation on

the operands)

:Ev

Use of F

v

@UT

-23 -

The Arithmetic Instructions

In the buffer memory, each 16-bit sample is considered as
a complex sample with 8-~bits representing the real part X

and the imaginary part Y.

The arithmetic unit of the correlator is designed to carry

out the complex product:

+ i(a b, + a,b

(al + ibl) X (a2 + ib2) = (ala - b 1P5 2 l)

2 1b2)
To calculate this product as quickly as possible, the arith-
metic unit carries out 4 multiplications in parallel (cf.
Fig. 8).

- each multiplier has two inputs, called A & B

- the multipliers can be supplied either with an internal
sample (from the buffer memory) or with an external

value (for correlator test programs).
Each arithmetic operation occurs in ' two stages:

a) choice of operand for each input to each
multiplier; given the multiplier 1, for ex-

ample, we can choose for the input A:

The value X (the pair

internal ©F Y internal
X, Y being at an address calculated by the

APB processor)

The value X (test).

v
external ©¥ Y external

This choice must be made for the inputs A and B

to each multiplier.

" Note: the value 1 can be chosen for the input A.

-24 _

b) use of the result from the multipliers.,

Each multiplier produces the product A x B.

For each pair of multipliers; the following

operations can be carried out:

Ml + M2
Ml - M2
Ml
Result: ignoring the result of one of
the multipliers
M2
-1

What emerges from this last operation is the

result from the arithmetic unit. This result (part
real and part imaginary) is stored in the result
memory at the address calculated by the APM pro-
cessor. (Obviously this only applies if storage

is required c,f. ACC instruction),

NQte :

If, as seen in a) above, we can decide each one of
the inputs A and B for the 4 multipliers, it is
impossible to address more than one complex sample
at a time. As a result, X and Y are the same for
all multipliers, and so an operation between two

complex samples requires two steps.

2.4. The Process of Accumulation

N
Let us calculate the expression S ::Ej X4 Xi + 1

It can be calculated in N + 1 operathns.

- 25 -~

Fiqure 8

Selection of operand Selection of operand

/’J\ /—/\

Selection of operand : X or Y or 1 (for A entry only)

- 26 _

Let XO Xy be the first term in this sum. It will
be stored in the result memory at a given address.
If the second term X, X, is stored at the same

1 72
address, it will erase the preceeding term.

To calculate S correctly, it must be added to the

preceding term. That is the method of accumulation.

The result of a calculation by the arithmetic unit

can be:

- stored in the result memory (erasing what was

there before)

- Dbe added to that which was in the result memory

and "re-stored" at the same address.

2.,4.1.2 Method 2

Let an experiment proceed in several stages in line,
and suppose we want to accumulate the result of each

stage in the result memory.

e.g. N
At stage 0, the correlator calculates SO =§§oi XO i1
i=0
" " " i ”
1, Sl N
" " Hi " 11 o
M S L Amoi-1
1=0

M

The final result is S = S.
2 8y
=0

Method 1 does not work as at each stage the result

erases the previous stage.

To resolve this problem, the correlator posscsses

a second method of accumulation, with higher priority,
allowing us to inhibit the first method and to make
the accumulation in the result memory even i7 the

first method indicates that it cannot be donc.

2.4.2

- 27 -

This corresponds to 2 modes of operation of the

correlator

- an experiment commenses and the contents of

the result memory are erased

- an experiment continues and the results are

accunmulated in the result memory.

The mode in which the correlator operates is deter-
mined by the internal microprogram (c.f. 2.4.2.3)

which:

-~ launches an experiment with the order START -

EXPERIMENT

- continues an experiment with the order CONTINUE -

EXPERIMENT

e v ate i e it Ve o s et o s Mk e e e S (o o (e e oy e Wt e e e T G A e e A e e T i G D

The accumulation of the multiplier-results, for
real and imaginary values is achieved by two accu-

mulatore. This mechanism is described in Fig. 9.

- 27a-
Fiqure 9

Result from ARI unit

Result from ARI unit

(reafl p) (imadinary p)
Zero Zero
or or
::l "4
IN_REG IN REQ
Accumulator Accumulator
FUT-REG PUT-REG

~

W

Real p | Imag. p

Element of result
memory addressed
by APM processor,

4

- 28 .

Each accumulator has two inputs. One of these is »
always the result of calculation by the arithmetic unit (AU),
Accumulation is carried out, or not, according to

the value in the other input of the accumulator

which already contains the result memory, or which

has the value zero.

2.4.2.2 Terminolom

7
_________ et

Fach accumulator has two inputs and one output.
The output is the OUT ~ REGISTER, which can be
written in the result memory at the address calcu-

lated by the APM processor.

The two inputs are: - the output of the ALU
- the IN -~ REGISTER

The IN - REGISTER is loaded:

- either with the contents of the results memory
(accumulation)

or with zero (non-accumulaticn).

- the first method of accumulation is called FF1l

-~ the second is called FF2.

2.4.2.3 Function

Wwhichever method is used, the accumulation instructions

contain 3 bits indicating whether or not:

- the IN/OUT REGISTER are locaded into the

accumulators

- the OUT - REGISTER is written into the result

memnory

- The IN - REGISTER is loaded with the contents
of the result memory (this loading, if it is re-
quested, will be, or will not be implemented ac-

cording to whether the method FF1l or FF2 is used).

In

- 29 -

A necessary (but not sufficient) condition for

accumulation is that these 3 bits are all 1.

both methods FF1 AND FF2 is controlled by 2 bits
one SET which sets up the method (bit = 1);

one CLEAR which deactivates if it was in use
(bit = 1);

(the value 0 correspond to NO - OPERATION).

One set up, FF1 @R FF2 remain in force as long as a

CLEAR operation is not programmed.

If

If

if F¥F2 is inhibited, the reading of the result
memory in the IN - REGISTER is controlled by
FF1

if FFr2 is in force, the control of FF is inhibited.

FF2 is inhibited:

if FF1l is in force, the IN - REGISTER is loaded

with the contents of the result memory
(in agreement with the 3 bits mentioned earlier)

if not, the IN - REGISTER is loaded with 0.

FF2 is in force, the result memory is always read

into the IN - REGISTER. (In agreement with the 3 bits

mentioned earlier.

EISCAT publications

F. du Castel, O. Holi, B. Hultgvist, H., Kohl and M. Tiuri:
A European Incoherent Scatter Facility in the Auroral Zone (EISCAT).

A Teasibility Study ("The Green Report") June 1971. (Out of print).

0. Bratteng and A. Haug:
‘Model Ionosphere at High Latitude, EISCAT Feasibility Study, Report
No. 9.

The Auroral Observatory, Tromsd July 1971. (out of print).

A Duropean Incoherent Scatter Facility in the Auroral Zone, UHF

System and Organization {("The Yellow Report'"), June 1974,
EISCAT Annual Report 1976, (0ut of print).

P.5. Xildal and T. Haglior:s:
Balance between investment in reflector and feed in the VHF cylindri-
cal antenna,
BISCAT Technical Notes Mo. 77/1, 1977.

s
T. Hagfofs:
Least mean square fitting of data to physical models.

EISCAT Technical Notes No. 78/2, 1378.

T. Hagfors:
The effect of ice on an antenna reflector,

EISCAT Technical Notes No. 78/7, 197¢.

T. Hagfors:
The bandwidth of a linear phased array with stepped de. v corrections.
EISCAT Technical Notes No. 78/4, 1978,

Data Group meeting in Wiruna, Sweden, 1520 Jan, 1973
EISCAT Meotings No. 78/1. 1978

WA S R EIY Ty sy e T e oy e AR et
[N INELAN A ALY SR RIS U U SR AN ST R U .7 i

H-T, Alker:
Measurement principles in the EISCAT system

RISCAT Technical Notes No. 78/5, 1978

EISCAT Data Group'meeting in Tromsd, Norway 30-31 May, 1978
EXSCAT Meetings No. 78/2, 1978.

P-S. Kildal:
Discrete phase steering by permuting precut phase cables.
FISCAT Technical Notes No. 78/6, 1978

EISCAT UHPF antenna acceptance test,

FEISCAT Technical Notes No. 78/7, 1978.

P-5. Kildal:
Feeder elements for the EISCAT VHF parabolic cylinder antenna.

FISCAT Technical Notes No. 78/8, 1978.

H-J. Alker:
Program CORRSIM: System for program development and software
simulation of EISCAT digital correlator, User’s Manual.

EISCAT Technical Notes No. 79/9, 1979.

H-J. Alker:
ITnstruction manual for EISCAT digital correlator.

EISCAT Technical Notes Ho. 79/10, 1979

H-J. Alker:
A programmable correlator module for the EISCAT radar system.

EISCAT Technical Notes Ho. 79711, 1979,

T. Ho and H-J. Alker:
Scientific progromming of the EISCAT digital correlator.

BEISCAT Technical Notes YNo. 7%/12, 1979.

5. Westerlund (editor):
Proceedings BISCAT 2Annual Review Meeting 1969, Part I and II,
Abisko, Sweden, 12-16 March 1979,

EISCAT Meetings No. 79/3, 1979.

J. Murdin:
EISCAT UHF Geometry.
EISCAT Technical Notes No. 79/13, 1979.

T. Hagfors:
Transmitter Polarization Control in the EISCAT UHF System.
EXSCAT Technical Notes No. 79/14, 1979.

B. Torustad:
A description of the «o..- wwsy ianguage for the EISCAT digital
correlator.

EISCAT Technical Notes No. 79/15, 1979,

Errors in incoherent scatter radar measurements.

EISCAT 'Technical Notes No. 79/16, 1279.

EISCAT Digital Correlator, ThsT MANUAL,

FEISCAT Technical Notes Mo. 79/17, 1979.

~

G, Leijeune:
A program library for incoherent scatter calculation.

EISCAT Technical Notes Mo, 79,718, 1979,

K. Folkoestad:
Lectures for EISCAT Porsonnel, Volume T

el A 3 o e o . - 7/ - "7 ¢
RISCAT Technical Notes No, 79719, 1979.

Svaein A, Kvalwvilk:

Coryrelator Ruffer-Monory for the BISCAT Radar syvstem

3 H -t wr - ¢ i
VISORT Toohnical Nobtos. Mo, A0/ 20,

P-38. Kildal:
DISCAT VHEP Antenna Tests

Notes No. 80/21

EISCAT Technical
J. Armstrong:
EISCAT Experiment Preparation Manual

EISCAT Technical Notes No. 80/22

A. Tarner:
EILSCAT Data Gathering and Dissemination

EISCAT Technical Note 80/23

Terrance o and Hans-J¢grgen Alker:
Scientific Programming of the EISCAT Digital Correlator (Revised)

EISCAT Technical Note 81/24

Tervrance Ho:
Programs Corrsim, Corrtest: System for Program Development and
Software Simulation of RISCAT Digital Correlator, User s manual.

EISCAT Technical Note 81/25

Terrance Ho:
Instruction Manual for EISCAT Digital Correlator (Revised),

FEISCAT Technical Note 81/26

Terrance Ho:
Standard Subroutines and Programs for FEISCAT Digital Correlator.

EISCAT Technical Note 81/27

Terrance Ho:
Pocket Manual for Programming the EISCAT Digital Correlator,
FISCAT Technical Note 81/28

. Folkestad:
Lectures for RISCAT Personnel, Volume 11,
EISCAT Technical tote 81,29

M, Lehtinon soh Zona-Tidsa Turvnen:

X . .) PR
astonrna airass e oalihration
by [OE H PRNR N S . i (o I - han b N t

I U N RN P T R
RAISOAT Mochnieal Hehe 1050

K. Folkesctad:

Use of the BEISCAT Radar as a supplement to rocket measurements.

EISCAT Technical Note 81/31

T. Turunen, T Mustonen and P J S Williams:
EISCAT UHF RECEIVERS: Report and Recommendations
EISCAT Technical Note 81/32

Phil Williams:
Polarisers in the BISCAT System

EISCAT Technical Note 81/33

