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Note : This technical note was first published 

in French in June 1980 ~o make EISCAT users familiar with 

the programming and operation of the EISCAT correlator." 

It succeeded so well in this aim that I thought a translation 

would be valuable. In preparing this translation I received 

considerable help from Kristen Folkestad, Hans-Jorgen Alker 

and Regis Gras. The original contained a section on the 

development tools available for the writing and implementation 

of correlator microprograms. The early version of CORRSIM 

has been replaced by an entirely new version which u together 

with the program CORRTEST, is described in EISCAT Technical 

Note 81/25. The section on program development has therefore 

been omitted from this translation. Phil Williams (Ed.) 
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THE EISCAT CORRELATOR 

The EISCAT correlator is a semi-specialised hardware device. 

- specialised because it has been constructed to 

calculate expressions of the form 

N 

LXi (x. and x .. are complex samples) 
1 l-J 

i = Q 

- semi-specialised because it is not set in a hard-wired 

configuration, but can be microprogrammed so that a 

certain versitility is available in the type of calcu­

lation and the way in which it is carried out. 

1. OUTLINE DESCRIPTION 

This correlator includes a buffer rnemory, where sampled 

data are stored before processing, and a result memory 

where the results are stored. 

The correlator is not isolated but forms part of a system 

which also includes: 

- the radar controller 

- a Nord-1Q computer from Norsk Data. 

The correlator is a multiprocessor. For different reasons, 

especially the need for speed, the correlator is a multi­

processor in which each micro-instruction can carry out 

7 operations in parallel. 

The correlator is Inicroprogrammable and possesses a 

program memory of 64 words, each 128 bits, and different 

fields of data. 
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1.1 The Buffer Memory and Result Memory 

1.1.1 ~~§_§~~~§~_~§~2~Y. 

The Buffer memory is divided into two symmetric 

parts which can simultaneously be read by the 

correlator and written in by the AID-converter. 

Each part of this memory holds 16-bit words with 

a maximum capacity of 64 kiloword9 (for the time 

being the capacity is 4 kilowords). It is in this 

memory that the sampled measurements are stored; 

each sample is stored as 2 8-bit numbers, X being 

sampled from the in-phase channel and Y from the 

quadrature channel. 

As soon as the correlator has finished its calcu­

lations on the part of the memory it has just read, 

it switches to the other part of the memory which 

has just received data. The part which previously 

was being read now receives new data. This permu­

tation is conducted by the radar controller. 

1.1.2 ~~§_E§~~!~_~§~2~Y 

The result memory holds 2048 64-bit words, and is 

designed with the possibility for a doubling of 

the present capacity. It is here that the corre­

lator stores the correlation functions it has cal­

culated. Each word in this memory is made up of: 

32 bits for the real part of the result and 

32 bits for the imaginary part. 

The real and imaginary parts are stored together 

at the same address. 

1.2 Links with other equipment. 

The correlator is linked to Nord-10 via Direct 

Memory Access: mm, and via a NON-m1A I/O-Fort. 
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The links make use of CAMAC. (CAMAC is an inter­

national standard for electrical connection be­

tween different pieces of equipment). 

These links serve: 

- to transfer data from the result memory 

to the computer memory via the high-speed 

DMA channel 

to load the prograrmnable memories of the 

correlator from the Nord-lO (cf. 1.4.1 and 

1.4.2) via the low-speed CAMAC output port. 

1.2.2 Links with the Radar Controller 

As it has been stated previously, the radar con­

troller controls the buffer memory of the corre­

lator. The radar controller gives the following 

commands: 

- start sampling 

- swi-tch buffer memory 

- start computation. 

1.3 The Correlator as a Multiprocessor 

It is capable of carrying out 7 operations in parallel. 

These 7 simultaneous operations make up one step in the 

basic computation. 

In general, each basic computation can be broken down 

into: 

a choice of the operand in the buffer memory 

an arithmetic ca lculation on the operand selected 

storing of the result, with or without accumulation, 

in the result memory. 
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A complete calculation, carried out by the correlator, 

is made up of a certain number of basic operations. The 

control of these basic computations is carried out by the 

loop counters. 

The 5 parallel functions of the correlator are: 

calculation of the buffer memory address (APB 

Processor) 

control of the arithmetic tinit 

calculation of the result memory address (APM 

Processor) 

accumulation of the results in the result memory 

control of the loop counters (i.e. control of the 

running microprogram, 4.2.1). 

To these must be added two other functions: 

control of the DMA transfer to the computer 

control of the communications between correlators 

(assuming a multicorrelator system which does not 

yet exist) . 

1.4 The Different Parts of the Correlator Memory. 

To be executed, every program needs 

instructions 

data. 

In what we normally call a program, written in a high­

level or an assembly language, ins"tructions and data 

can be stored in the same memory. For the correlator, 

however, the instructions and the parameters are stored 

physically in different hardware memories, serving as 

program-memory and parameter-memory. The last is actu­

ally a set of 2 register stacks. 
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This can contain 64 instructions, each occupying 

128 bits. A single instruction is divided into 

7 fields, each field being a single processor in­

struction. The 7 fields are executed simultaneously. 

Restriction: 

Of the 64 words in the program memory, only 62 can 

be used 

the word 0 in the memory is used as an idle 

loop at the start of the calculation 

the words 63 is used in the control of external 

interrupts. 

It is in these registers that the operands for 

the different processors are stored. 

There are two fields for the principle parameters: 

the APB stack: a stack of 16 registers serving 

as a memory for the APB-processor (the processor 

which controls the addresses in the buffer memory; 

cf 3) and opt.ionaJly reloads the loop-counters. 

the APM-stack: a stack of 16 registers identical 

to the previous stack and serving as a memory for 

the APM-processor (the processor which controls 

the addresses in the result memory; cf 3) 

Note : there are also three registers to initialise 

the status register 

the SAR register (start address of the program) 

the DATA-I-register (containing the number of words 

to be transferred to the computer). 

This introductory description is summarised in Fig.l. 
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2. OPERATION AND PROGRAMMING 

The different processors in the correlator are now de­

scribed from two viewpoints: 

their method of operation 

their programming. 

Each micro instruction of 128 bits is divided into 7 fields 

which each controls a particular function. During the exe­

cution of a microinstruction, the seven functions are 

carried out in parallel. 

The internal division of a single microinstruction is given 

in Fig. 2. 

PR0: 

APB: 

APM: 

ARI: 

Ace: 

0UT: 

1/0: 

6 bits 8 bits .7 bits 36 bits 17 bits .18 bits 34 bits 

1/0 0UT ACC ARI APB PR0 

Figure 2. 

controls the execution of the program in the 

correlator and permits the loading of the pro­

grammable registers 

controls the addressing of data in the buffer 

memory 

controls the addressing of data in the result 

memory 

controls the arithmetic operations carried out 

on the data 

controls the accumulation of the results calcu­

lated at a given instant with those already stored 

in the result memory 

carries out the transfer of data from the result 

memory to the computer by DMA 

would control communication in a multicorrelator 

system (not in use) • 
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Figure 3,2 

Control of the Pr.ogram Counter 

3 (IF LCl~O THEN B ELSEIF LC2~O THEN A OTHERWISE CONT) 
6 (IF LC3~0 THEN B ELSEIF LC2~O THEN A OTHERWISE CONT) 
7 (IF LCl~O OR LC3~O THEN B ELSEIF LC2~0 THEN A OTHERWISE CONT) 

13 (IF LCl~O THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT) 
15 (IF LCl~O OR LC3~0 THEN B OTHERWISE CONT) 
16 (IF LC3~0 THEN B ELSE IF LC2=0 THEN A OTHERWISE CONT) 
17 (IF LCl~O OR LC3~O THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT) 
23 (IF Lcl=O THEN B ELSEIF LC2~0 THEN A OTHERWISE CONT) 
26 (IF LC3=0 THEN B ELSEIF LC2~O THEN A OTHERWISE CONT) 
27 (IF LCl=O OR LC3=0 THEN B ELSEIF LC2~O THEN A OTHERWISE CONT) 
33 (IF LC1=O THEN B ELSE IF LC2=0 THEN A OTHERWISE CONT) 
35 (IF LC1=0 OR LC3=0 THEN B OTHERWISE CONT) 
36 (IF LC3=0 THEN B ELSEIF LC2=O THEN A OTHERWISE CONT) 
37 (IF LCl=O OR LC3=0 THEN B ELSE IF LC2=O THEN A OTHERWISE CONT) 
40 (USE-A) 
46 (IF LC2~0 OR LC3~O THEN B ELSE A) 
47 (IF LCl=O OR LC2~0 OF LC3~0 THEN B ELSE A) 
54 (IF LC3~P THEN B ELSE A) 
55 (IF LCl=O OR LC3iO THEN B ELSE A) 
56 (IF LC2=0 OR LC3iO THEN B ELSE A) 
57 (IF LC1=0 OR LC2=0 OR LC3iO THEN B ELSE A) 
62 (IF LC2io THEN B ELSE A) 
63 (IF LCl=O OR LC2iO THEN B ELSE A) 
66 (IF LC2~0 OR LC3=0 THEN B ELSE A) 
67 (IF LC1=0 OR LC2~0 OR LC3=0 THEN B ELSE A) 
71 (IF LC1=0 THEN B ELSE A) 
72 (IF LC2=0 THEN B ELSE A) 
73 (IF LC1=0 OR LC2=0 THEN B ELSE A) 
74 (IF LC3=O THEN B ELSE A) 
75 (IF LC1=0 OR LC3=0 THEN B ELSE A) 
76 (IF LC2=0 OR LC3=0 THEN B ELSE A) 
77 (IF LCl=O OR LC2=0 OR LC3=0 THEN B ELSE A) 

Different possible tests 

o PC=PC+l, POP STACK 
1 PC=RETURN ADDR., POP STACK 
2 PC= ADDR., POP STACK 
3 PC= SAR, POP STACK 

4,14 PC=PC+l 
5,15 PC=RETURN ADDR. 
6,16 PC=ADDR. 
7,17 PC=SAR 

10 PC= PC+l, PUSH STACK 
11 PC= RETURN ADDR., PUSH STACK 
12 PC= ADDR., PUSH STACK 
13 PC= SAR, PUSH STACK 
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Figure 3,3 

Operations on the Loop Counters 

o NOOP 
1 LC1=LCl-l 
2 LCl=LCRl 
3 LCl=LCRlA 
4 IF LCL=O: LCl=LCRl,LC2= 

LC2-l, ELSE: LCl=LCl-l 
5 IF LCl=O and LC3=O:LCl= 

LCRlA, ELSE: LCl=LCl-l 
6 IF LCl=O: LCl=LCRl, 

ELSE: LCl=LCl-l 
7 IF LCl=O: LCl=LCRlA, 

ELSE: LCl=LCl-l 

o NOOP 
1 LC2=LC2-l 
3 LC2=LCR2 

Reloading of a register 

RELOAD: 0 NOOP 
1 REGISTER-RELOAD 

o NOOP 
1 LCRIA=LCl 

LCRlA 

o NOOP 
1 LC3=LC3-l 
2 LC3=LCR3 
3 IF LC3=O: LC3=LCR3, 

ELSE: LC3=LC3-l 

LC3 

R-ADDR. : 4 RELOAD SAR 
5 " BAR, APB 

22 " LCRl 
23 " LCR2 
24 " LCR3 

The reloading is only implemented if the bit REL0AD equals 1 
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2~1 The PR0-instructions (Fig. 3) 

This field controls: 

the loop-counters 

the loading of the programmable registers from the APB 

the program counter. 

APB-STACK 

To carry out a calculation, the correlator has 3 

12 bits loop-counters. These are: LC1, LC2, LC3 and 

a temporary register LCR lA. 

The 3 loop-counters are not identical; in particular, 

only the first, LCl, can be re-loaded from LCR lA. 

In the field of the PR0-instruction, 4 sub-fields 

indicate the operation to be effected on LC1, ... LC3, 

LCR lA. 

To control the number of loops in a program, the 

loop-counters are tested at O. Now the only oper­

ation that can be performed on a loop-counter is 

to decrease it, so it is necessary to load the 

loop-counters with their initial values. 

These initial values are cor.tained in three "load 

registers for loop-counters" LCR1, LCR2, LCR3. 

These three registers can themselves be loaded from 

the values stored in the APB-Stack memory (cf. 1.2.2). 

Once these registers are loaded, their contents can 

be transferred at will to the loop-counters. The 

mechanism is represented in Fig. 4. 

( 

Figure 4. 
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Note: Although the 3 loop-counters can be loaded 

from the LCRs by a single microinstruction, 

this does not apply to the loading of the 

LCRs themselves. The loading of an LCR with 

a value stored in the APB-Stack requires 3 

microinstructions: 

- one to program the reloading of an LCR 

- two NOOP (for the correlator needs two clock 

cycles after a reload). 

During the execution of a program, the program counter 

(PC) takes different values corresponding to different 

instructions. 

The value at any instant t is a function of: 

its value at the instant t-l 

the result of the instruction executed at t-l. 

Generally, from one step in a program to the next 

the program counter is increased by 1 (PC = PC + 1), 

except when the instruction being executed is a branch 

instruction (conditional or not). 

Example: 

I = 1 0 

10 IF (1. EQ. 2) GO TO 20 1 

I = I + 1 2 

GO TO 10 3 

20 CONTINUE 4 

Gtven a machine where one instruction only occupies 

one line and they are stored at addresses 0, I, 2, 

3 and 4, the values of PC would be: 
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t = 0 PC = 0 

t ::: 1 PC ::: I 

t = 2 PC = 2 

t = 3 PC - 3 

t = 4 PC = I 

t 5 PC ::: 4 

In a program language at the lowest level (assembler), 

2 types of instruction can be distinguished 

- those which increase the program counter (after 

their execution the computer passes to the next 

instruction) 

- those which load the program counter with an 

other address (conditionally branching or not); 

it is this latter type of instruction which allows 

loops in a program. 

The mechanism of conditional branching in the corre­

lator programs is a little different in the sense 

that the tests and the operations on the counter are 

separate. 

In the instruction field of the correlator there 

are two sub-fields called CODE-A and CODE-B (cf. 

Fig. 3.1). 

Each one receives the code of an operation possible 

on the program counter. 

A third sub-field contains the code of one of the 

32 possible tests on the loop-counters (listed in 

Fig. 3.2). It is the result of this test which de­

termines the choice between code A and code B. 

The mechanism is summarised in Fig. 5. 
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Instruction directed by PC at the instant C 

t: 

Program Field 

( TEST CODE_AAo...---C-O-D-E-_-B--I---'" ==== 
PC 

Code A 
Code instruction = or 

Code B 

t + 1: New PC = f (code instruction) 

Figure 5. 

as a function of 
the test 



- 17 -

Pro g r a m m i n g o f the C 0 u n t e r 

To facilitate the programming of the loops and to 

allow microprograms to have the structure of sub­

routines, the correlator makes use of a stack. 

This stack consists of 4 memories and it is carried 

out according to the LIFO principle (last in, first 

out) . 

At a given instant, only the last value loaded in 

the stack can be referred to. The set of instructions 

that can be programmpn 

controls this stack 

a) safe guarding in the stack the value of 

PC + 1 (the return address when calling a 

subroutine) 

b) destroying the last return address in the 

stack .. 

c) branching ~o the last return a3dress in the 

stack 

The complete list of instructions is given in Fig. 3.2. 

permits conditional branching or continuing 

in sequence. 

T est Pro g r a m m i n g 
------~----------

As has already been mentioned, the 32 possible tests 

(cf. Fig. 3.2) are tests on the value of the loop­

counters. No particular value can be tested - only 

if it is zero or not. 

There are two types of test; simple and double, which 

allow a choice between CODE-A and CODE-B. 

For simple tests, the choice is made as follows: 

if the test is true, use CODE-B; otherwise use 

CODE-A. 
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Example: 

IF LCl = 0 THEN B ELSE A (code test 71) 

IF LCl = 0 OR LC2 f 0 THEN B ELSE A (code test 63). 

For double tests, if test 1 is true, then use CODE-B; 

otherwise, if test 2 is true, then use CODE-A, other­

wise continue in sequence: 

Example: 

Test 1 

IF LC3 f 0 THEN B 

OTHERWISE CONTINUE. 

Restriction: 

Test 2 

ELSE IF LC2 f 0 THEN A 

The instruction field (cf. Fig. 3) only allows a 

single address for branching, so that only one of 

the two codes A or B can be a branching instruction. 

Note: 

In the program field, operations on the loop-counters 

and tests on their value are carried out. Each oper­

ation occurs in two stages: 

first the test on the value of the counter 

afterwards the operation on the counter. 

2.2 The APB - APM Instructions 

2.2.1 General 

These are the instructions which control the addressing 

of the buffer memory and the result memory. The in­

structions are identical, but they concern two dif­

ferent processors, operating in parallel. 
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APB APM 
- -

Commands given 
! 

'v ,,/ 

APB APM 

Processor Processor 
" / 

If' ,.~ 

'/ "l; Result 
Memory 

APB APM 
Stack Stack 

Figure 6. 

Each of the two processors has its own parameter 

memory containing 16 registers, the APB-Stacks and 

the APM-Stacks. 

Note 

the addressing capacity of the APM is 4 K of 

64 bits words (only 2 K words are implemented 

at present with 32 + 32 = real and maginary) 

and that of the APB 64 K 16-bits words (4 K words 

implemented at present, 8 bits for each sample) 

an address in the buffer memory concerns the 

two samples X and Y 

-
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an address in the result memory concerns the 

real and imaginary part of the result 

each element in the parameter memory APB-STACK 

and APM-STACK, is accessed like a table according 

to its index or address in the table. 

The instruction fields APM and APB only contain 

two addresses of operands in the param~ter memory. 

At a given instant, only two elements in the APB­

STACK or APM-STACK memories can be addressed in the 

same micro-instruction. In addition to the 16 regis­

ters of the APB/APM processors, each processor has 

an extra programable register for temporary storage. 

Terminology 

The terminology used in EISCAT Technical Notes is as 

follows: 

Rand S are operands (selectable) in each of 

the parameter memories 

A and B are the addresses of these operands 

the parameter memory is called RS, so that an 

operand is: R = RS (A) or S = RS (B) 

the programmable register is the Q-REGISTER. 

2.2.2 Use of AP~ and APM Processors 

The calculation of an address by a processor can be 

broken down into three stages: 

a) choice of an operand (ALU-SOURCE). This operand 

can be RS (A), RS (B) I Qr 0, DATA-I-REGISTER 

b) calculation on this operand (ALU-FUNCTION) 

For the two chosen operands, we can program 

addition, subtraction or operations of less 

obvious interest such as OR, AND, exclusive 

OR eotc. 
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b) use of the result 

The result of the calculation effected on the 

operands serves to address the buffer memory 

APB processor) or the result memory (APM pro­

cessor). In the EISCAT literature this address 

is called OUT. 

However, we should distinguish: 

OUT which is the address in the memory 

F which is the result of the calculation 

itself. 

In general, this result: 

serves as an address in the memory: OUT - F 

and 

can be stored: 

in the parameter memory RS (B) = F 

or 

in the Q-Register Q = F 

The possibility of storing temporary results 

allows registers to be used as base-addresses 

for calculating the next address in a vector­

addressing scheme. 

The mechanism is illustrated in Fig. 7 



Parameter 
Memory RS 

(APB-STACK 
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Figure 7 

~ 

16 registers 
... 

-

-'" 
v~ __ I--. 

'v 
Choice of operands 

.-----

Operand Operand 
R S 

,11 , II' 

ALU (for the 

calculation on 

the operands) 

'----I 
F' 

--. ~ 

F . ...---J-
lOUT 

I, 
Q - REGISTER r 1.--.. 

~ JI' 

.... , 
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2.3 The Arithmetic Instructions 

In the buffer memory, each l6-bit sample is considered as 

a complex sample with 8-bits representing the real part X 

and the imaginary part Y. 

The arithmetic unit of the correlator is designed to carry 

out the complex product: 

To calculate this product as quickly as possible, the arith­

metic unit carries out 4 multiplications in parallel (cf. 

Fig. 8). 

each multiplier has two inputs, called A & B 

the multipliers can be supplied either with an internal 

sample (from the buffer memory) or with an external 

value (for correlator test programs). 

Each arithmetic operation occurs in two stages: 

a) choice of operand for each input to each 

multiplier; given the multiplier 1, for ex­

ample, we can choose for the input A: 

The value X internal or Y internal (the pair 

X, Y being at an address calculated by the 

APB processor) 

The value X external or Yexternal (test). 

This choice must be made for the inputs A and B 

to each multiplier. 

Note: the value 1 can be chosen for the input A. 
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b) use of the result from the multipliers. 

Each multiplier produces the product A x B. 

For each pair of multipliers; the following 

operations can be carried out: 

Result: ignoring the result of one of 
the multipliers 

What emerges from this last operation is the 

resul t from the ari thmetic unit. This result (part 

real and part imaginary) is stored in the result 

memory at the address calculated by the APM pro­

cessor~ (Obviously this only applies if storage 

is required c.f. ACC instruction). 

Note : 

If, as seen in a) above, we can decide each one of 

the inputs A and B for the 4 multipliers, it is 

impossible to address more than one complex sample 

at a time. As a result, X and Y are the same for 

all multipliers, and so an operation between two 

complex samples requires two steps. 

2.4. The Process of Accumulation 

2.4.1 The Method in Use -----------------
N 

Let. us calculate the expression S = L Xi Xi + 1 

It can be calculated in N + 1 operat~ons. 
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Figure 8 

Selection of operand Selection of operand 

1/ il'_ " I 

A B A B 

1/ 
M M2 

Selection of operand X or Y or 1 (for A entry only) 
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Let Xo Xl be the first term in this sum. It will 

be stored in the result memory at a given address. 

If the second term Xl X2 is stored at the same 

address, it will erase the preceeding term. 

To calculate S correctly, it must be added to the 

preceding term. That is the method of accumulation. 

The result of a calculation by the arithmetic unit 

can be: 

stored in the result memory (erasing what was 

there before) 

be added to that which was in the result memory 

and "re-stored" at the same address. 

2.4 .1.2 Method 2 

Let an experiment proceed in several stages in line, 

and suppose we want, to accumulate the result of each 

stage in the result memory. 

e.g. 

At stage 0, the correlator calculates So 

" 11 1, " " 

11 " H, " 11 

M 

The final result is S = L 
j = 0 

" SI 

" SM 

S. 
J 

N 

=Er li ' XH. ~ll 
1=0 

Method I does not work as at each stage the result 

erases the previous stage. 

To resolve this problem, the correlator possesses 

i-I 

a second method of accumulat.ion, with higher priority, 

allowing us to inhibit the first method and to make 

the accumulation in the result memory even ir the 

first method indicates that it cannot be done. 
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This corresponds to 2 modes of operation of the 

correlator 

an experiment commenses and the contents of 

the result memory are erased 

an experiment continues and the results are 

accumulated in the result memory. 

The mode in which the correlator operates is deter­

mined by the internal microprogram (c.f. 2.4.2.3) 

which: 

launches an experiment with the order START -

EXPERIMENT 

continues an experiment with the order CONTINUE -

EXPERH1ENT 

2.4.2.1 Q~§9E~E~~2~ 

The accumulation of the multiplier-results, for 

real and imaginary values is achieved by two accu­

mulator2. This mechanism is described in Fig. 9. 
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Figure 9 
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Each accumulator has two inputs. One of these is 

always the re suI t of calculation by the arithmetic unit (AU). 

Accumulation is carried out, or not, according to 

the value in the other input of the accumulator 

which already contains the result memory, or which 

has the value zero. 

2.4.2.2 Terminoloffir ---------"""""" 

Each accumulator has two inputs and one output. 

The output is the OUT - REGISTER, which can be 

written in the result memory at the address calcu­

lated by the APM processor. 

The two inputs are: - the output of the ALU 

- the IN - REGISTER 

The IN - REGISTER is loaded: 

either with the contents of the results memory 

(accumulation) 

or with zero (non-accumulation). 

the first method of accumulation is called FFl 

the second is called FF2. 

2.4.2.3 Function 

Whichever method is used, the accumulation instructions 

contain 3 bits indicating whether or not: 

the IN/OUT REGISTER are loaded into the 

accumulators 

the OUT - REGISTER is written into the result 

memory 

The IN - REGISTER is loaded with the contents 

of the result memory (this loading, if it is re­

quested, will be, or will not be implemented ac­

cording to whether the method FFl or FF2 is used). 
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A necessary (but not sufficient) condition for 

accumulation is that these 3 bits are all 1. 

In both methods FFl AND FF2 is controlled by 2 bits 

one SET which sets up the method (bit = 1); 

one CLEAR which deactivates if it was in use 

(bit = 1); 

(the value 0 correspond to NO - OPERATION). 

One set up, FFl \i1R FF2 remain in force as long as a 

CLEAR operation is not programmed. 

if FF2 is inhibited, the reading of the result 

memory in the IN - REGISTER is controlled by 

FFl 

if FF2 is in force, the control of FF is inhibited. 

If FF2 is inhibited: 

if FFl is in force, the IN - REGISTER is loaded 

with the contents of the result memory 

(in agreement with the 3 bits mentioned earlier) 

if not, the IN - REGISTER is loaded with O. 

If FF2 is in force, the result memory is always read 

into the IN - REGISTER. (In agreement with the 3 bits 

mentioned earlier. 
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