
EISCAT
TECHNICAL

NOTE

THE EISCAT CORRELATOR
by

Regis Gras

KIRUNA
Sweden

..

..

EISCAT Technical Note 82/34

THE EISCAT CORRELATOR

Regis Gras

EISCAT Scientific Association

S-98l 27 Kiruna, Sweden

March 1982

EISCAT Technical Note 82/34

Printed in Sweden

ISSN 0349-2710

This note is an edited trans­

lation of "Programmation du

Correlateur d'EISCAT" by

Regis Gras published by

CEPHAG, Grenob1e.

- 2 -

CONTENTS

1. OUTLINE DESCRIPTION 3

1.1 The Buffer Memory and Result Memory 4

1.2 Links with other equipment 4

1.3 The Correlator as Multiprocessor 5

1.4 The different parts of the Correlator Memory 6

2. OPERATION AND PROGRAMMING 9

2.1 The PR0-instruction 13

2.2 The APB - APM instructions 18

2.3 The Arithmetic Instructions 23

2.4 The Process of Accumulation 24

Note : This technical note was first published

in French in June 1980 ~o make EISCAT users familiar with

the programming and operation of the EISCAT correlator."

It succeeded so well in this aim that I thought a translation

would be valuable. In preparing this translation I received

considerable help from Kristen Folkestad, Hans-Jorgen Alker

and Regis Gras. The original contained a section on the

development tools available for the writing and implementation

of correlator microprograms. The early version of CORRSIM

has been replaced by an entirely new version which u together

with the program CORRTEST, is described in EISCAT Technical

Note 81/25. The section on program development has therefore

been omitted from this translation. Phil Williams (Ed.)

- 3 -

THE EISCAT CORRELATOR

The EISCAT correlator is a semi-specialised hardware device.

- specialised because it has been constructed to

calculate expressions of the form

N

LXi (x. and x .. are complex samples)
1 l-J

i = Q

- semi-specialised because it is not set in a hard-wired

configuration, but can be microprogrammed so that a

certain versitility is available in the type of calcu­

lation and the way in which it is carried out.

1. OUTLINE DESCRIPTION

This correlator includes a buffer rnemory, where sampled

data are stored before processing, and a result memory

where the results are stored.

The correlator is not isolated but forms part of a system

which also includes:

- the radar controller

- a Nord-1Q computer from Norsk Data.

The correlator is a multiprocessor. For different reasons,

especially the need for speed, the correlator is a multi­

processor in which each micro-instruction can carry out

7 operations in parallel.

The correlator is Inicroprogrammable and possesses a

program memory of 64 words, each 128 bits, and different

fields of data.

- 4 -

1.1 The Buffer Memory and Result Memory

1.1.1 ~~§_§~~~§~_~§~2~Y.

The Buffer memory is divided into two symmetric

parts which can simultaneously be read by the

correlator and written in by the AID-converter.

Each part of this memory holds 16-bit words with

a maximum capacity of 64 kiloword9 (for the time

being the capacity is 4 kilowords). It is in this

memory that the sampled measurements are stored;

each sample is stored as 2 8-bit numbers, X being

sampled from the in-phase channel and Y from the

quadrature channel.

As soon as the correlator has finished its calcu­

lations on the part of the memory it has just read,

it switches to the other part of the memory which

has just received data. The part which previously

was being read now receives new data. This permu­

tation is conducted by the radar controller.

1.1.2 ~~§_E§~~!~_~§~2~Y

The result memory holds 2048 64-bit words, and is

designed with the possibility for a doubling of

the present capacity. It is here that the corre­

lator stores the correlation functions it has cal­

culated. Each word in this memory is made up of:

32 bits for the real part of the result and

32 bits for the imaginary part.

The real and imaginary parts are stored together

at the same address.

1.2 Links with other equipment.

The correlator is linked to Nord-10 via Direct

Memory Access: mm, and via a NON-m1A I/O-Fort.

- 5 -

The links make use of CAMAC. (CAMAC is an inter­

national standard for electrical connection be­

tween different pieces of equipment).

These links serve:

- to transfer data from the result memory

to the computer memory via the high-speed

DMA channel

to load the prograrmnable memories of the

correlator from the Nord-lO (cf. 1.4.1 and

1.4.2) via the low-speed CAMAC output port.

1.2.2 Links with the Radar Controller

As it has been stated previously, the radar con­

troller controls the buffer memory of the corre­

lator. The radar controller gives the following

commands:

- start sampling

- swi-tch buffer memory

- start computation.

1.3 The Correlator as a Multiprocessor

It is capable of carrying out 7 operations in parallel.

These 7 simultaneous operations make up one step in the

basic computation.

In general, each basic computation can be broken down

into:

a choice of the operand in the buffer memory

an arithmetic ca lculation on the operand selected

storing of the result, with or without accumulation,

in the result memory.

- 6 -

A complete calculation, carried out by the correlator,

is made up of a certain number of basic operations. The

control of these basic computations is carried out by the

loop counters.

The 5 parallel functions of the correlator are:

calculation of the buffer memory address (APB

Processor)

control of the arithmetic tinit

calculation of the result memory address (APM

Processor)

accumulation of the results in the result memory

control of the loop counters (i.e. control of the

running microprogram, 4.2.1).

To these must be added two other functions:

control of the DMA transfer to the computer

control of the communications between correlators

(assuming a multicorrelator system which does not

yet exist) .

1.4 The Different Parts of the Correlator Memory.

To be executed, every program needs

instructions

data.

In what we normally call a program, written in a high­

level or an assembly language, ins"tructions and data

can be stored in the same memory. For the correlator,

however, the instructions and the parameters are stored

physically in different hardware memories, serving as

program-memory and parameter-memory. The last is actu­

ally a set of 2 register stacks.

- 7 -

This can contain 64 instructions, each occupying

128 bits. A single instruction is divided into

7 fields, each field being a single processor in­

struction. The 7 fields are executed simultaneously.

Restriction:

Of the 64 words in the program memory, only 62 can

be used

the word 0 in the memory is used as an idle

loop at the start of the calculation

the words 63 is used in the control of external

interrupts.

It is in these registers that the operands for

the different processors are stored.

There are two fields for the principle parameters:

the APB stack: a stack of 16 registers serving

as a memory for the APB-processor (the processor

which controls the addresses in the buffer memory;

cf 3) and opt.ionaJly reloads the loop-counters.

the APM-stack: a stack of 16 registers identical

to the previous stack and serving as a memory for

the APM-processor (the processor which controls

the addresses in the result memory; cf 3)

Note : there are also three registers to initialise

the status register

the SAR register (start address of the program)

the DATA-I-register (containing the number of words

to be transferred to the computer).

This introductory description is summarised in Fig.l.

R
a
d

a
r

C
o

n
tr

o
ll

e
r

x
y
~

B
u

ff
e
r

M
em

o
ry

~
-
p
r
o
g
r
a
m

S
e
q

u
e
n

c
e
r

"
1

' 6

1

A
d

d
re

ss

P
ro

c
e
ss

o
r

A
P

B
-P

R
O

C

S
e
le

c
te

d

S
am

pl
e

~
r
a
m

M
em

or
y

h
o

ic
e
 o

f
~
-
p
r
o
g
r
 <

"lI
T

C
o

m
m

an
d

s
iv

e
n

to

th

e

d
i
f
f
e
r
e
n
t
~
r
o
c
e
s
s
o
r
s

2
3

4 1
A

ri
th

m
e
ti

c

A
d

d
re

ss

U
n

it

P
ro

c
e
ss

o
r

,

I'

I-

A
P

M
-P

R
O

C

R
e
s
u

lt

~P
.

re
.l

p
.

im
.IE

-

w

'--
-7

1
A
c
c
u
m
u
l
a
t
o
r
~

R
e
s
u

lt

M
em

o
ry

T
h

e

r
e
s
u

lt

is

w

ri
tt

e
n

in

th

e

a
d

d
re

s
s

c
a
lc

u
la

te
d

b

y

A
P

M
-P

R
O

C

N
O

R
D

-l
O

C

o
m

p
u

te
r

I'

5
,J

/

C
o

n
tr

o
l

o
f

D
at

a

T
ra

n
sf

e
r

3
'

1 ;3
l.

<.
Q

C

H

co

CD

f-
'

- 9 -

2. OPERATION AND PROGRAMMING

The different processors in the correlator are now de­

scribed from two viewpoints:

their method of operation

their programming.

Each micro instruction of 128 bits is divided into 7 fields

which each controls a particular function. During the exe­

cution of a microinstruction, the seven functions are

carried out in parallel.

The internal division of a single microinstruction is given

in Fig. 2.

PR0:

APB:

APM:

ARI:

Ace:

0UT:

1/0:

6 bits 8 bits .7 bits 36 bits 17 bits .18 bits 34 bits

1/0 0UT ACC ARI APB PR0

Figure 2.

controls the execution of the program in the

correlator and permits the loading of the pro­

grammable registers

controls the addressing of data in the buffer

memory

controls the addressing of data in the result

memory

controls the arithmetic operations carried out

on the data

controls the accumulation of the results calcu­

lated at a given instant with those already stored

in the result memory

carries out the transfer of data from the result

memory to the computer by DMA

would control communication in a multicorrelator

system (not in use) •

L
o

o
p

-c
o

u
n

te
rs

R

e
lo

a
d

in
g

o

f
re

g
is

te
r

s
ta

c
k

s

..A
..
-
-
-
--

--
--

C
~
N
D
-
C
~
D
E

R
E
L
~
A
D

~

'--
-

-
-
v

-
-

~

1
a
d

d
re

s
s

fo
r

JU
M

P
o

r
C

A
L

L

1
2

o

't
e
ra

ti
o

n
s

+

+-
.

4
o

p
e
ra

tl
o

n
s

..y

3
o

p
e
ra

ti
o

n
s

+

2
o

p
e
ra

ti
o

n
s

32

o
If

e
ra

ti
o

n
s

8
o

p
e
ra

tl
o

n
s

R
-A

D
D

R

'"
A

d
d

re
ss

o

f
re

g
is

te
r

to

re
lo

a
d

~

t-
'.

'LQ

c:

I-
'

r;

0
(])

I

w

I-
'

-11-

Figure 3,2

Control of the Pr.ogram Counter

3 (IF LCl~O THEN B ELSEIF LC2~O THEN A OTHERWISE CONT)
6 (IF LC3~0 THEN B ELSEIF LC2~O THEN A OTHERWISE CONT)
7 (IF LCl~O OR LC3~O THEN B ELSEIF LC2~0 THEN A OTHERWISE CONT)

13 (IF LCl~O THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT)
15 (IF LCl~O OR LC3~0 THEN B OTHERWISE CONT)
16 (IF LC3~0 THEN B ELSE IF LC2=0 THEN A OTHERWISE CONT)
17 (IF LCl~O OR LC3~O THEN B ELSEIF LC2=0 THEN A OTHERWISE CONT)
23 (IF Lcl=O THEN B ELSEIF LC2~0 THEN A OTHERWISE CONT)
26 (IF LC3=0 THEN B ELSEIF LC2~O THEN A OTHERWISE CONT)
27 (IF LCl=O OR LC3=0 THEN B ELSEIF LC2~O THEN A OTHERWISE CONT)
33 (IF LC1=O THEN B ELSE IF LC2=0 THEN A OTHERWISE CONT)
35 (IF LC1=0 OR LC3=0 THEN B OTHERWISE CONT)
36 (IF LC3=0 THEN B ELSEIF LC2=O THEN A OTHERWISE CONT)
37 (IF LCl=O OR LC3=0 THEN B ELSE IF LC2=O THEN A OTHERWISE CONT)
40 (USE-A)
46 (IF LC2~0 OR LC3~O THEN B ELSE A)
47 (IF LCl=O OR LC2~0 OF LC3~0 THEN B ELSE A)
54 (IF LC3~P THEN B ELSE A)
55 (IF LCl=O OR LC3iO THEN B ELSE A)
56 (IF LC2=0 OR LC3iO THEN B ELSE A)
57 (IF LC1=0 OR LC2=0 OR LC3iO THEN B ELSE A)
62 (IF LC2io THEN B ELSE A)
63 (IF LCl=O OR LC2iO THEN B ELSE A)
66 (IF LC2~0 OR LC3=0 THEN B ELSE A)
67 (IF LC1=0 OR LC2~0 OR LC3=0 THEN B ELSE A)
71 (IF LC1=0 THEN B ELSE A)
72 (IF LC2=0 THEN B ELSE A)
73 (IF LC1=0 OR LC2=0 THEN B ELSE A)
74 (IF LC3=O THEN B ELSE A)
75 (IF LC1=0 OR LC3=0 THEN B ELSE A)
76 (IF LC2=0 OR LC3=0 THEN B ELSE A)
77 (IF LCl=O OR LC2=0 OR LC3=0 THEN B ELSE A)

Different possible tests

o PC=PC+l, POP STACK
1 PC=RETURN ADDR., POP STACK
2 PC= ADDR., POP STACK
3 PC= SAR, POP STACK

4,14 PC=PC+l
5,15 PC=RETURN ADDR.
6,16 PC=ADDR.
7,17 PC=SAR

10 PC= PC+l, PUSH STACK
11 PC= RETURN ADDR., PUSH STACK
12 PC= ADDR., PUSH STACK
13 PC= SAR, PUSH STACK

-12-

Figure 3,3

Operations on the Loop Counters

o NOOP
1 LC1=LCl-l
2 LCl=LCRl
3 LCl=LCRlA
4 IF LCL=O: LCl=LCRl,LC2=

LC2-l, ELSE: LCl=LCl-l
5 IF LCl=O and LC3=O:LCl=

LCRlA, ELSE: LCl=LCl-l
6 IF LCl=O: LCl=LCRl,

ELSE: LCl=LCl-l
7 IF LCl=O: LCl=LCRlA,

ELSE: LCl=LCl-l

o NOOP
1 LC2=LC2-l
3 LC2=LCR2

Reloading of a register

RELOAD: 0 NOOP
1 REGISTER-RELOAD

o NOOP
1 LCRIA=LCl

LCRlA

o NOOP
1 LC3=LC3-l
2 LC3=LCR3
3 IF LC3=O: LC3=LCR3,

ELSE: LC3=LC3-l

LC3

R-ADDR. : 4 RELOAD SAR
5 " BAR, APB

22 " LCRl
23 " LCR2
24 " LCR3

The reloading is only implemented if the bit REL0AD equals 1

-13-
2~1 The PR0-instructions (Fig. 3)

This field controls:

the loop-counters

the loading of the programmable registers from the APB

the program counter.

APB-STACK

To carry out a calculation, the correlator has 3

12 bits loop-counters. These are: LC1, LC2, LC3 and

a temporary register LCR lA.

The 3 loop-counters are not identical; in particular,

only the first, LCl, can be re-loaded from LCR lA.

In the field of the PR0-instruction, 4 sub-fields

indicate the operation to be effected on LC1, ... LC3,

LCR lA.

To control the number of loops in a program, the

loop-counters are tested at O. Now the only oper­

ation that can be performed on a loop-counter is

to decrease it, so it is necessary to load the

loop-counters with their initial values.

These initial values are cor.tained in three "load

registers for loop-counters" LCR1, LCR2, LCR3.

These three registers can themselves be loaded from

the values stored in the APB-Stack memory (cf. 1.2.2).

Once these registers are loaded, their contents can

be transferred at will to the loop-counters. The

mechanism is represented in Fig. 4.

(

Figure 4.

- 14-

Note: Although the 3 loop-counters can be loaded

from the LCRs by a single microinstruction,

this does not apply to the loading of the

LCRs themselves. The loading of an LCR with

a value stored in the APB-Stack requires 3

microinstructions:

- one to program the reloading of an LCR

- two NOOP (for the correlator needs two clock

cycles after a reload).

During the execution of a program, the program counter

(PC) takes different values corresponding to different

instructions.

The value at any instant t is a function of:

its value at the instant t-l

the result of the instruction executed at t-l.

Generally, from one step in a program to the next

the program counter is increased by 1 (PC = PC + 1),

except when the instruction being executed is a branch

instruction (conditional or not).

Example:

I = 1 0

10 IF (1. EQ. 2) GO TO 20 1

I = I + 1 2

GO TO 10 3

20 CONTINUE 4

Gtven a machine where one instruction only occupies

one line and they are stored at addresses 0, I, 2,

3 and 4, the values of PC would be:

- 15 -

t = 0 PC = 0

t ::: 1 PC ::: I

t = 2 PC = 2

t = 3 PC - 3

t = 4 PC = I

t 5 PC ::: 4

In a program language at the lowest level (assembler),

2 types of instruction can be distinguished

- those which increase the program counter (after

their execution the computer passes to the next

instruction)

- those which load the program counter with an

other address (conditionally branching or not);

it is this latter type of instruction which allows

loops in a program.

The mechanism of conditional branching in the corre­

lator programs is a little different in the sense

that the tests and the operations on the counter are

separate.

In the instruction field of the correlator there

are two sub-fields called CODE-A and CODE-B (cf.

Fig. 3.1).

Each one receives the code of an operation possible

on the program counter.

A third sub-field contains the code of one of the

32 possible tests on the loop-counters (listed in

Fig. 3.2). It is the result of this test which de­

termines the choice between code A and code B.

The mechanism is summarised in Fig. 5.

- 16 -

Instruction directed by PC at the instant C

t:

Program Field

(TEST CODE_AAo...---C-O-D-E-_-B--I---'" ====
PC

Code A
Code instruction = or

Code B

t + 1: New PC = f (code instruction)

Figure 5.

as a function of
the test

- 17 -

Pro g r a m m i n g o f the C 0 u n t e r

To facilitate the programming of the loops and to

allow microprograms to have the structure of sub­

routines, the correlator makes use of a stack.

This stack consists of 4 memories and it is carried

out according to the LIFO principle (last in, first

out) .

At a given instant, only the last value loaded in

the stack can be referred to. The set of instructions

that can be programmpn

controls this stack

a) safe guarding in the stack the value of

PC + 1 (the return address when calling a

subroutine)

b) destroying the last return address in the

stack ..

c) branching ~o the last return a3dress in the

stack

The complete list of instructions is given in Fig. 3.2.

permits conditional branching or continuing

in sequence.

T est Pro g r a m m i n g
------~----------

As has already been mentioned, the 32 possible tests

(cf. Fig. 3.2) are tests on the value of the loop­

counters. No particular value can be tested - only

if it is zero or not.

There are two types of test; simple and double, which

allow a choice between CODE-A and CODE-B.

For simple tests, the choice is made as follows:

if the test is true, use CODE-B; otherwise use

CODE-A.

- 18

Example:

IF LCl = 0 THEN B ELSE A (code test 71)

IF LCl = 0 OR LC2 f 0 THEN B ELSE A (code test 63).

For double tests, if test 1 is true, then use CODE-B;

otherwise, if test 2 is true, then use CODE-A, other­

wise continue in sequence:

Example:

Test 1

IF LC3 f 0 THEN B

OTHERWISE CONTINUE.

Restriction:

Test 2

ELSE IF LC2 f 0 THEN A

The instruction field (cf. Fig. 3) only allows a

single address for branching, so that only one of

the two codes A or B can be a branching instruction.

Note:

In the program field, operations on the loop-counters

and tests on their value are carried out. Each oper­

ation occurs in two stages:

first the test on the value of the counter

afterwards the operation on the counter.

2.2 The APB - APM Instructions

2.2.1 General

These are the instructions which control the addressing

of the buffer memory and the result memory. The in­

structions are identical, but they concern two dif­

ferent processors, operating in parallel.

- -

- -

X y / ,

Buffer
Memory

-19 -

--j I
,- -

APB APM
- -

Commands given
!

'v ,,/

APB APM

Processor Processor
" /

If' ,.~

'/ "l; Result
Memory

APB APM
Stack Stack

Figure 6.

Each of the two processors has its own parameter

memory containing 16 registers, the APB-Stacks and

the APM-Stacks.

Note

the addressing capacity of the APM is 4 K of

64 bits words (only 2 K words are implemented

at present with 32 + 32 = real and maginary)

and that of the APB 64 K 16-bits words (4 K words

implemented at present, 8 bits for each sample)

an address in the buffer memory concerns the

two samples X and Y

-

- 20 -

an address in the result memory concerns the

real and imaginary part of the result

each element in the parameter memory APB-STACK

and APM-STACK, is accessed like a table according

to its index or address in the table.

The instruction fields APM and APB only contain

two addresses of operands in the param~ter memory.

At a given instant, only two elements in the APB­

STACK or APM-STACK memories can be addressed in the

same micro-instruction. In addition to the 16 regis­

ters of the APB/APM processors, each processor has

an extra programable register for temporary storage.

Terminology

The terminology used in EISCAT Technical Notes is as

follows:

Rand S are operands (selectable) in each of

the parameter memories

A and B are the addresses of these operands

the parameter memory is called RS, so that an

operand is: R = RS (A) or S = RS (B)

the programmable register is the Q-REGISTER.

2.2.2 Use of AP~ and APM Processors

The calculation of an address by a processor can be

broken down into three stages:

a) choice of an operand (ALU-SOURCE). This operand

can be RS (A), RS (B) I Qr 0, DATA-I-REGISTER

b) calculation on this operand (ALU-FUNCTION)

For the two chosen operands, we can program

addition, subtraction or operations of less

obvious interest such as OR, AND, exclusive

OR eotc.

- 21 -

b) use of the result

The result of the calculation effected on the

operands serves to address the buffer memory

APB processor) or the result memory (APM pro­

cessor). In the EISCAT literature this address

is called OUT.

However, we should distinguish:

OUT which is the address in the memory

F which is the result of the calculation

itself.

In general, this result:

serves as an address in the memory: OUT - F

and

can be stored:

in the parameter memory RS (B) = F

or

in the Q-Register Q = F

The possibility of storing temporary results

allows registers to be used as base-addresses

for calculating the next address in a vector­

addressing scheme.

The mechanism is illustrated in Fig. 7

Parameter
Memory RS

(APB-STACK
or

APM-STACK)

- 22 -

Figure 7

~

16 registers
...

-

-'"
v~ __ I--.

'v
Choice of operands

.-----

Operand Operand
R S

,11 , II'

ALU (for the

calculation on

the operands)

'----I
F'

--. ~

F---J-
lOUT

I,
Q - REGISTER r 1.--..

~ JI'

.... ,

- 23

2.3 The Arithmetic Instructions

In the buffer memory, each l6-bit sample is considered as

a complex sample with 8-bits representing the real part X

and the imaginary part Y.

The arithmetic unit of the correlator is designed to carry

out the complex product:

To calculate this product as quickly as possible, the arith­

metic unit carries out 4 multiplications in parallel (cf.

Fig. 8).

each multiplier has two inputs, called A & B

the multipliers can be supplied either with an internal

sample (from the buffer memory) or with an external

value (for correlator test programs).

Each arithmetic operation occurs in two stages:

a) choice of operand for each input to each

multiplier; given the multiplier 1, for ex­

ample, we can choose for the input A:

The value X internal or Y internal (the pair

X, Y being at an address calculated by the

APB processor)

The value X external or Yexternal (test).

This choice must be made for the inputs A and B

to each multiplier.

Note: the value 1 can be chosen for the input A.

_ 24

b) use of the result from the multipliers.

Each multiplier produces the product A x B.

For each pair of multipliers; the following

operations can be carried out:

Result: ignoring the result of one of
the multipliers

What emerges from this last operation is the

resul t from the ari thmetic unit. This result (part

real and part imaginary) is stored in the result

memory at the address calculated by the APM pro­

cessor~ (Obviously this only applies if storage

is required c.f. ACC instruction).

Note :

If, as seen in a) above, we can decide each one of

the inputs A and B for the 4 multipliers, it is

impossible to address more than one complex sample

at a time. As a result, X and Y are the same for

all multipliers, and so an operation between two

complex samples requires two steps.

2.4. The Process of Accumulation

2.4.1 The Method in Use -----------------
N

Let. us calculate the expression S = L Xi Xi + 1

It can be calculated in N + 1 operat~ons.

- 25 -

Figure 8

Selection of operand Selection of operand

1/ il'_ " I

A B A B

1/
M M2

Selection of operand X or Y or 1 (for A entry only)

_ 26 _

Let Xo Xl be the first term in this sum. It will

be stored in the result memory at a given address.

If the second term Xl X2 is stored at the same

address, it will erase the preceeding term.

To calculate S correctly, it must be added to the

preceding term. That is the method of accumulation.

The result of a calculation by the arithmetic unit

can be:

stored in the result memory (erasing what was

there before)

be added to that which was in the result memory

and "re-stored" at the same address.

2.4 .1.2 Method 2

Let an experiment proceed in several stages in line,

and suppose we want, to accumulate the result of each

stage in the result memory.

e.g.

At stage 0, the correlator calculates So

" 11 1, " "

11 " H, " 11

M

The final result is S = L
j = 0

" SI

" SM

S.
J

N

=Er li ' XH. ~ll
1=0

Method I does not work as at each stage the result

erases the previous stage.

To resolve this problem, the correlator possesses

i-I

a second method of accumulat.ion, with higher priority,

allowing us to inhibit the first method and to make

the accumulation in the result memory even ir the

first method indicates that it cannot be done.

- 27 -

This corresponds to 2 modes of operation of the

correlator

an experiment commenses and the contents of

the result memory are erased

an experiment continues and the results are

accumulated in the result memory.

The mode in which the correlator operates is deter­

mined by the internal microprogram (c.f. 2.4.2.3)

which:

launches an experiment with the order START -

EXPERIMENT

continues an experiment with the order CONTINUE -

EXPERH1ENT

2.4.2.1 Q~§9E~E~~2~

The accumulation of the multiplier-results, for

real and imaginary values is achieved by two accu­

mulator2. This mechanism is described in Fig. 9.

- 27a.-

Figure 9

Result from ARI unit Resu t fr
(rea p) (imac inar

Zero

or

[, ~ _,I

IN_REGI

Accumulator

y1UT-REG

J

Zero

or

I ,I

IN RE -

Accumulator

\

Real p Imag. ~

Element of result
memory addressed
by APM processor.

y1UT-REG

..

om ARI unit
y p)

- 28 _

Each accumulator has two inputs. One of these is

always the re suI t of calculation by the arithmetic unit (AU).

Accumulation is carried out, or not, according to

the value in the other input of the accumulator

which already contains the result memory, or which

has the value zero.

2.4.2.2 Terminoloffir ---------""""""

Each accumulator has two inputs and one output.

The output is the OUT - REGISTER, which can be

written in the result memory at the address calcu­

lated by the APM processor.

The two inputs are: - the output of the ALU

- the IN - REGISTER

The IN - REGISTER is loaded:

either with the contents of the results memory

(accumulation)

or with zero (non-accumulation).

the first method of accumulation is called FFl

the second is called FF2.

2.4.2.3 Function

Whichever method is used, the accumulation instructions

contain 3 bits indicating whether or not:

the IN/OUT REGISTER are loaded into the

accumulators

the OUT - REGISTER is written into the result

memory

The IN - REGISTER is loaded with the contents

of the result memory (this loading, if it is re­

quested, will be, or will not be implemented ac­

cording to whether the method FFl or FF2 is used).

- 29 -

A necessary (but not sufficient) condition for

accumulation is that these 3 bits are all 1.

In both methods FFl AND FF2 is controlled by 2 bits

one SET which sets up the method (bit = 1);

one CLEAR which deactivates if it was in use

(bit = 1);

(the value 0 correspond to NO - OPERATION).

One set up, FFl \i1R FF2 remain in force as long as a

CLEAR operation is not programmed.

if FF2 is inhibited, the reading of the result

memory in the IN - REGISTER is controlled by

FFl

if FF2 is in force, the control of FF is inhibited.

If FF2 is inhibited:

if FFl is in force, the IN - REGISTER is loaded

with the contents of the result memory

(in agreement with the 3 bits mentioned earlier)

if not, the IN - REGISTER is loaded with O.

If FF2 is in force, the result memory is always read

into the IN - REGISTER. (In agreement with the 3 bits

mentioned earlier.

LJ S_~'l~'LI~.'JJlLLs~~_tAQl]J~.
F. du Castel, o. Holtl B. Bultqvist .. H. Kohl and M. Tiuri:

A European Incoherent Scatter Facility in the Auroral Zone (EISCAT) R

A Feasibility Study ("The Green Report") June 1971. (Out of print).

O. Bratteng and A. Haug:

Model Ionosphere at High LatituJe, EISCAT Feasibility Study, Report

No. 9.

The 7mroral Observatory I ']';coms(:.) .July 1971. (Out. of print) d

A European Jnco)-lercllt. Scatter }'acili ty in the Auroral Zone, UHF

System ,md Organizdt~ion ("The Yellovt Heport"), June 1974.

EI;,CAT Ammal Heport 197 (j. (IJut. of pri n t) •

P.S. K:Udal and T. Hag:Col:~:

Bal(}ncc bei~\'lecn invc:stment in ref1ec-tor and feed in the VHF' cylindri-·

cal Clntennd.

EISCNl' Tecl1nical Note:; NOd 77/1, 1977.

T. Hagfo.rs:

Least mean square fitting of data to physical models.

EISCJ\T Technical Notes No. 78/2,- 1978.

T. Ha9fors:

The effect of .lCC on ;:'.rl d'1tenn;1 retlc~ctor.

EISCAT Technical Notes No. 78/~, 19~D.

T. Hagfors:

The bcmdwi.dth (.lE <l linc;Jx p11a:5cd (.1CCdY \vi th stepped ',it

EIS CA T 're c hn :i ca 1 N ') t. e s lJ n . 7 B / 4 J 19 7 8 •

Dat.'-:', Group rw:ct:in~~ 5n F.i tuna .. ~i,,"e(kr;, IB··-20 clan. 19713

' .. Ol:Lt;ctions.

i'1ea.suremcnt principles in the EISC]\.T system

EISCAT Technical Notes No. 78/5, 1978

EISCAT Data Group meeting in Tromso, Norway 30-31 May, 1978

EISCAT Meeti.ngs No. '] 8/2, 1978.

P-s. Kildal:

Discrete phase steering by penntlting precut. phase cables.

EISCAT Technical Notes No. 78/6, 1978

E:ISCAT UHF ;:mtenna acccpt~ance test.

I"I C'('2\'" '['", .}, .. ·····1 N t·,,~· N' 78/7] ()78 ~, .. d, .1- .. cc.,n.ll_a.. O .. tc •. > o. I " •

p-·S. Kildal:

Feeder elements for tJ1C EISCAT VHF parabolic cylinder antenna.

£15C]\1' Technical Notes No. 7[>,/8, 1978.

Program COi~RSIJY1: System for- p.::ograrn development and software

simulation of EISCAT digital correlator, User's Manual.

EISCAT Technical Notes No. 79/9, 1979.

H-,J. Alkc:'r:

Instruction manual for EISCAT digital correlator.

EISCAT Technical Notes No. 79/10, 1979

1\ pror;-;ranunable cox-TelataI' module for the EISCAT Flc..1ar system.

EISCAT Technical Notes No. 79/11, 1979.

T. Ho and H·-.T. l\lker:

Scientific progrnnmdng of the EISCAT digital correliltor.

:EISC,I,T 'rechnicLll Note:'; 110. 79/12 1 1979.

;i. 1'1 est: er 1 Utl :j (C c15 tOt) :

Procec:di.nCJ~; El SCNl' i\nnua:1. Heview l'icct.ing 1969. Part I and 11,

Abisko, Sweden, 12-16 March 1979.

EISCAT Beetings No. 79/3, 1979~

,J ~ Murdin:

EISC}\'I' UHF Geornet~ry ..

EISCAT Technical Notes :No. 79/13, 1979.

T~ Hagfors:

Trimsmi tter Po1arizat.ion Con'tro1 in the EISCAT UHF System.

EISCAT T~chnica1 Notes No. 79/14, 1979.

B. T(5rusi~(jc1;

A description of th(~ do:. ''''_'".1 .Language for the EISCAT digital

corre] ~lh)r.

EISCAT Technical Notes No. 79;],5, 1979.

Errors in incoherent sc~ttcr rad~r measurements.

EISCAT Tcchnic01 Notes No. 79/16, 1979.

EISCA'J' D.iCJHCll CDlrcl.3tor .. TE~~;'J.' MANUAL.

EIc-;CXr Tc~,;hnicQl. Notf;S No. 79/17 I 1979.

,.:;. LI:; j (>u Ill:~ :

A plogrdm library for irlcohcrent scattcr calculation.

EIscAT Tcchnical. Note~ No. 79/18, 1979.

J.:. Folkcc,tdd:

Lf:'ctures for >.::J5CAr Pr.Tscmnel, Volumn I

Svcin A. Kvalvlt:

C:cJr I'CI "1 (J ,t. (-) .r' r~. ',] f £. ,~-': 1. ·-·\\~t',"~·;ll() r ji f (')I- t h£:3 F~ I:~ C:l\'r n.;:) d (J r s ,).I s 1:em

P-s. Kildcd:

EISCAT Technical Notes No. 80/21

J. Arrnstrong:

EISCAT Experiment Preparati.on M<.1nual

EISCAT Technical Notes No. 80/22

1\. Farmer:

EISCAT Data Gathering and Dissemination

EISCAT Technical Note 80/23

'I'erranCf.' Eo and Ba.ns-,J~3rgen 7\1ke[:

Scientific Progrnmming of the EISCAT Digital Correlator (Revised)

EISCAT Technical Note 81/24

Programs Corrsim, Corrtest: System for Program Development and

Software Simulation of EISCAT Digital Correlator. User's manual.

EISCAT Technical Note 81/25

T 0. r r a n'c c' IT 0 :

Instruction Manual for EISCAT Digital Correlator (Revised).

EISC]'IT Technical Note 81/26

'rerrance Ho:

Standard Suhroutines and Programs for EISCAT Digital Correlator.

EISCAT Technical Note 81/27

'['errance Ho:

Pocket Manual for Programming the EISCAT Digital Correlator.

EISCl\'l' Technical Note 81/28

r,('ctllfes for EISC1\T P('r~:;c1nn('J., Volume 11.

El~:;cr,'l' Tc,chnici11 r:otc' flJ/29

r~. 1"()lkc,;tacl:

11,:;(' e·l: the r:JSCAT Har]at: i1;:~ a Sllpplcl!lc'nt to rocket measurements.

EISCAT Technical Note Rl/31

T. Turunen, T Mustonen and P J S Williams:

EISCAT UHF RECEIVERS: Report and Reco~nendations

EISCAT Technical Note 81/32

Phil Williams:

Polarisers in the EISCAT System

EISCAT Technical Note 81/33

..

..

